Electron trap for DNA-bound repair enzymes: A strategy for DNA-mediated signaling
نویسندگان
چکیده
منابع مشابه
Electron trap for DNA-bound repair enzymes: a strategy for DNA-mediated signaling.
Despite a low copy number within the cell, base excision repair (BER) enzymes readily detect DNA base lesions and mismatches. These enzymes also contain [Fe4S4] clusters, yet a redox role for these iron cofactors had been unclear. Here, we provide evidence that BER proteins may use DNA-mediated redox chemistry as part of a signaling mechanism to detect base lesions. By using chemically modified...
متن کاملDNA-mediated charge transport for DNA repair.
MutY, like many DNA base excision repair enzymes, contains a [4Fe4S]2+ cluster of undetermined function. Electrochemical studies of MutY bound to a DNA-modified gold electrode demonstrate that the [4Fe4S] cluster of MutY can be accessed in a DNA-mediated redox reaction. Although not detectable without DNA, the redox potential of DNA-bound MutY is approximately 275 mV versus NHE, which is charac...
متن کاملDNA-repair enzymes.
Recent crystallographic studies of DNA-repair enzymes have provided the structural basis for the recognition of damaged DNA. The results imply that flipping out of the base is a common and crucial event in DNA repair. Two classes of repair enzymes that recognize distinct types of damage may exist. DNA-repair enzymes that share similar folds and DNA binding motifs have been proposed to belong to...
متن کاملCharge-transport-mediated recruitment of DNA repair enzymes.
Damaged or mismatched bases in DNA can be repaired by base excision repair enzymes (BER) that replace the defective base. Although the detailed molecular structures of many BER enzymes are known, how they colocalize to lesions remains unclear. One hypothesis involves charge transport (CT) along DNA [Yavin et al., Proc. Natl. Acad. Sci. U.S.A. 102, 3546 (2005)]. In this CT mechanism, electrons a...
متن کاملATP-stimulated, DNA-mediated redox signaling by XPD, a DNA repair and transcription helicase.
Using DNA-modified electrodes, we show DNA-mediated signaling by XPD, a helicase that contains a [4Fe-4S] cluster and is critical for nucleotide excision repair and transcription. The DNA-mediated redox signal resembles that of base excision repair proteins, with a DNA-bound redox potential of ~80 mV versus NHE. Significantly, this signal increases with ATP hydrolysis. Moreover, the redox signa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2006
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0600239103